请选择 进入手机版 | 继续访问电脑版

触摸屏与OLED论坛

 找回密码
 注册论坛
查看: 7423|回复: 27

老总看行业:升达科技林总谈触控技术的发展动力及趋势

  [复制链接]
发表于 2009-1-16 17:13:53 | 显示全部楼层 |阅读模式
本文是升达科技总裁林招庆博士给撰写的一篇文章,从触摸屏技术的简介,谈到当前流行的触控面板技术,并详细对比了几种触控面板技术的特性以及优缺点。再谈到触控面板在各种应用场景,无不详尽的一一表述。并特别提到了当前热火朝天的投射电容式面板中的一些关键问题,有技术探讨,有IC厂商的罗列,更考虑到了触控面板产业链的上下游整合和各大厂商的专利状况,资料可谓详尽,心思真的是花的非常的多,那么触控面板的未来走势究竟是什么样子呢?林总也结合当前的实际情况给出了自己的观点:
/ D( b1 N1 x8 x# Z9 u) q, C
  • 目前触控面板仍以小尺寸之应用主(尤其是多指触控)而投射电容式面板势将成为主流而逐渐取代电阻式方案。
  • Demo不等于量产,目前多指应用之解决方案,Demo者多但可量产者少,其间仍有相当大的距离。
  • 控制IC厂商本身的研发能量决定未来/电子/产品使用情境的发展。
  • 选择适当面板技术是系统厂商最重要量。
  • 与控制IC厂商的合作关系攸关触控面板厂商之生存

9 l0 y( P1 _/ w. @9 D. d再我们刚刚进入到 2009 年之际,就看到了这么好的文章,当特别感谢升达科技的林总,希望这篇文章能够对触控面板行业的朋友们有一定的参考作用。谢谢!- l2 M, G3 }3 ~
.
( {& u, _' w/ N) u, e" ?) {: P.6 @( v3 Z. y  V
------------------------9 i4 _8 K3 `5 f5 D/ f
.
8 t/ S! V2 [' }4 N' V* I" v引    言 - r# x" Q- Y3 D: p& N
." l$ W' Q) V( n! K
人机界面产业在长期的蕴酿之中,由苹果计算机(Apple)之iPhone手机正式呜锣揭开序幕、粉墨登场、全场惊讶连连、涟渏波动,久久不能平息,演出者与观众之间眉来眼去,秋波迭送,似乎两厢情愿,深情日款,大有一时天雷勾动地火,一发不可收拾之势。 9 O$ v) k; n- H) p
.
* z3 P' n( P6 \触控技术在与蓝天为幕,昭日引导,响亮的前进曲之氛围中,引发广泛之回响,确实为近年来产业界罕见的现象,因为: & S  n% M8 y7 d) H6 F( `3 \" I
  • 新人机界面引进之新产品概念在一片了无新意之3C产品中活化了生机。
  • 模块化设计概念下,日渐褪色之系统整合创意的末梢神经突然恢复知觉,让系统设计者在模块组合经验活化创意,开始擦脂抹粉。
  • 新技术之引进连动出整个上下游产业链重新组合换位,俱认机不可失,期待美人青睐!
  • 应用层面无远弗届,NB、手机、PDA,掌上型游戏机、MP3音乐播机,导航系统、ATM提款机等皆受全面之冲击,宛如巨星临降,万人空巷。
& s8 c, ^$ E$ r2 `  N9 W
以下将就主要触技术做介绍比较及产业现况做简介,并针对目前最夯之多指应用所需之技术、专利、整合、应用等做更深入之讨论。
; |( y3 j# }9 }8 i' ?# q' D5 x: ~. Q. u/ _/ e; b. K
一、主要触控技术简介
3 O) x, d) B. h
* |/ ^5 \$ F% T  y目前市面上触控技术主要如下几种,分河饮水,各立门庭:
* ~0 l5 F6 o, \, w. [
0 e- B& U1 J+ X3 g+ {% d(1)电阻式触控面板:
. k: T5 ?8 a  A* V
7 J; o( Y* i9 l( U3 r藉由压力接通在上下二层电阻网络,由电阻分布以决定压力点之位置。目前市面上有四线、五线、六线、七线、八线式各种组合,各类均有其优缺点,但以四线及五线最为普及。电阻式技术原理简单,门槛低,上下游整合完整,但无法进行多手指侦测,且反应较不灵敏,寿命较短为其主要缺点,目前手写式手机屏幕多为此类。下表比较各式电阻式之不同,如表(一)。   ?; ]" B* D* b0 H2 l( D# P( Y- r+ C5 v

) F  c3 t. K& r+ p: V' l$ w; K6 b  z9 ~% o
, m. ^; m7 s  x# T! \
表(一)、电阻式触控面板技术比较 % ~3 Q# |' i- `; S' A$ g0 U; Z8 k
image001.jpg
- F$ y: |1 c9 X/ k9 I资料来源:IEK
' Q# z( f6 |7 u. y$ v
(2)表面电容式(Surface Capacitive)触控面板
  k) v" T, @/ X' |8 e; S; T5 w$ z7 m/ N* F
原理类似电阻式,但使用电容值而非电阻值为计算量以决定触摸位置。主要应用在中大尺寸上的应用,但如同电阻式,虽为感应式较电阻式灵敏,技术门槛低,且无法进行多手指侦测。! \8 ~9 r% F  x# X
! t0 S+ y0 b" W1 f# x& c/ D
(3)表面声波式(Surface Acoustic Wave, SAW)触控面板) I0 g2 y9 k+ G5 q

2 z9 o) }- y  d) c( h" _利用声波发放器传送至平面玻璃,造成均匀分布之表面声波,当表面波手指或软性界面触碰,即产生声波遮断以藉此计算触碰位置。惟其成本高,上下游整合不易,且无法做多点侦测,是其较大之限制。 7 n# m2 Y; U3 y& F* N
! q# H6 F2 ]8 k, i& f
(4)振波感应式(Dispersive Signal Technology)触控面板3 u- V9 D9 j, l; O+ t9 C# }
; U3 J* ]* K; T% x: h
为3M发明,主要原理在强化玻璃基座上利用触摸,使玻璃内部之振动波传导至其四个角落之感应及控制器以决定触摸位置。其优点为不受表面脏污与刮损影响,且可适用于大尺寸(32吋以上),缺点是无法多点触控,价格高,产业上下游整合不完整。
6 e$ z8 Y3 W( m# v: m+ E8 d. u- W9 G
(5)红外线式触控面板% _! C; {/ _9 b  e3 U9 K8 ?
0 W/ L1 D" W0 p
原理是以红外线的发射与接收构成X、Y之矩阵,当红外线波在特定位置被接触物阻隔即可计算出接触物(如手指)之位置,主要应用大尺寸应用及多点触控,但功耗高、分辨率差,机构需架高做为红外线的信道。
3 |: N8 X. x7 _1 O* o. G5 f
9 o4 _/ J% R8 b  j(6)投射电容式触控面板
0 d, `6 c8 X1 B3 u4 A& c
; H# J; b1 |& V# ?0 A% M& @投射式电容与表面式不同,主要在于表面使用上下两电极做为电容,而投射式则将上下电极细分成矩阵式分布以画出X轴、Y轴交叉分布做为电容矩阵,当手指触碰时透用X、Y轴之扫描即可侦测在触碰位置电容变化,进而计算手指之所在。苹果计算机 (Apple) 之i Phone即以此技术为基础,其技术门槛高但后市可期。
, S; Y) s0 G5 _+ r' p* X9 Q; I9 D1 s* {, ^: o/ h5 f/ ?8 J, X
(7)电磁式触控面板3 x' L3 M& |# t" F: n
- w3 [- F2 T6 t# ^7 }! x1 ^
主要是透过一个特殊的电磁笔与感应面板做触控而去计算电磁笔在感应面板上之轨迹,因其需用特殊之电磁笔及无法做多点,某些特殊机种外,无其它应用产生,某些应用尝试使用电磁与电容或与电阻结合,但成本极高,恐也非长期可靠。 ; e' a2 N9 Q( `& u

5 M9 ^1 k0 b* _  X/ I$ G除上述之技术外,尚有其它方法引入触控领域,如微软的光学成像式 (Microsoft Surface) 造价昂贵,反应速度慢,可用度不高,另外友达、TM D、夏普之内嵌光 (In-Cell design) 检器技术更为复杂,价格仍难被终端厂商所接受,其期初面板之良率,恐也是另一难题,故亦都不在本文讨论范围之内,表二比较各式的优缺点,各式触控面板之主要应用则整理于表三。
8 t" }; Z7 B$ [) o# n$ q. c, V) v" I0 e0 j: \* K! X5 P' X
表(二)主要针对各式面板特性做基本之比较:
: {$ p1 T* h/ K2 S  Y* ^. M* L image002.jpg " [( T+ a6 ~: g# o9 O; L

, @% R4 V6 g% N: j表(三)、触控面板主要应用:
; c: u, Y6 R. w+ Q% ] image003.jpg

5 S% L. [9 D0 j! q, \0 p
由表(二)及表(三)基本上就触控面板可得结论如下:
  • 中大尺寸仍以电阻式面板为主,主要是其成本较低但功能有限,若需较多功能,则红外线与电磁式将为主流。
  • 小尺寸或可携式产品初期仍会以电阻式为主,但由于i Phone之风潮,投射电容式面板之比重将持续增加,甚至全面取代。
  • 复合面板(电阻式+电容式,或电阻式+电磁式,或电磁式+电容式)将成为各家商研发之主要方向。(如N-Trig开发,电磁式与电容式组合,WACOM的电磁式+电阻式,但贵。)
  • 除多手指侦测外,手写或笔写或手笔并进亦将是未来主要之研发重点。
3 P0 S& i+ k' ?, v" C5 ]; d3 y
二、触控产业的主要关键

; {* {/ L) J$ p: s# \
触控产业其实行之有年,无声无息直到苹果计算机 (Apple) i Phone的多手指应用方才引爆,平地一声雷,因此集三千宠爱于一身,尤其是投射电式面板。其它面板技术只在突破以既有之基础实施多手指应用。而投射电容触控技术本也非新技术(原笔记型计算机之触控板鼠标即是),以下将讨论投射电容式面板在应用却也面临一些关键问题:
7 B9 Q9 O4 ?5 m3 y$ C6 R7 t
(1)透光感应表面的技术。

' K* y2 E8 h7 Y( J: m# I可透光感应面基本上是上下二层电极矩阵形成,中间以绝缘层隔开以形成电容,结构甚为简单。触控面板基本上是由轻薄透明之感应面与一控制IC以及IC内部相对应之软件 (Software)及韧体(Firmware)组合而成。导电电极而溅镀或蒸镀透明导电材料(目前都为ITO,氧化铟锡)于透明基材上,一般为玻璃或PET薄膜以Film/Film、Film/Glass或Glass/Glass三种结构上下贴合而成。感应面的主要规格为透光率与耐久性,玻璃上之溅镀或蒸镀,原为面板厂所熟知,因此传统中小尺寸面板厂也积极投此一领域,然玻璃厚、重、贵且易碎,显然并非长期饭票。因此电阻式触控面板业便挟其在光学PET溥膜的经验挺进。
4 m  V% T2 \+ W, i, ?
(2)控制IC之来源。

, h8 Q+ l% X4 j& A
不同于电阻式面板,原理简单、门槛低,其感应控制电路无需独立控制IC,而多由系统上之主控CPU以软件处理,投射电容式目前尚无法由系统上的主IC处理而须独立IC处理,因此也吸引国内外多家IC设计公司相继投入,如美商新思(Synaptics)、塞普拉斯 (Cypress) 及台湾升达 (Sentelic)、义隆 (Elantek) 等等。但投射电容式触控IC因其门槛相当高,若非具相当研发实力恐难完成。其主要技术门槛在 (a)系统噪声之处理 (b)手指上之汗、油、膏、污之克服 (c) Cover lens或机构保护面之厚度使感应灵敏度之降低 (d)人体体质不同造成系统稳定度降低 (e)在小尺寸应用上手指分辨率低使光标分辨率不易提升,往往使Demo容易,量产困难,若无长期经验之累积是无法克服量产之稳定问题。目前只有美商新思(Synaptics)与台湾升达(Sentelic) 在此方面有长期之基础,其它厂商恐将需渡过一段学习曲线。

% y! O/ G6 d. z(3)系统整合的关键。

. c* A7 G5 ?+ a* f投射电容式本身最大之障碍在于系统整合与应用时的状况,毕竟面板终究得安装在屏幕面板,其噪声与系统其它电路所产生之噪声极易对触控产生干扰,造成定位不准,若只是手势之应用或许可行,若未来手写与指针之应用、控制IC便是关键,第二:因系统机构的设计致使Cover lens变厚,原则上问题将益形严重。另外,模块厂是否需含客制化Cover lens亦是产业供应链的一大挑战。最后,当面板整合到LCD屏幕面板上之贴合,亦将考验制程的能力,因为目前面板贴合良率本身也只有80%~85%而已,另一段的贴合势必将使良率再低,而且尺寸愈大、贴合愈难。
/ O% w2 D; g$ A$ R! e
(4)产业上下游整合模式。
% z; S- ]1 I) H; K) V( D
表(四)举例粗分之触控面板产业链,上游其原本都掌握在日本业者身上,中游材料加工则在日本与台湾,下游面板之贴合、压合、测试,则在台湾,少部份在大陆完成,由于投射电容式面板于面板加工制造,系全新领域,多数仍在摸索与试车阶段,良率之提升仍有一段路途。而面对全新投射电容式面板,目前之面板厂均无整合、测试与系统支持之经验,此段仍必须由IC设计厂来执行,而IC厂本身有无整合前段制程之能力仍待考验,届时势必率动整个上下游产业链之定位与重组,约在2009年Q2后将更为明朗。
0 T9 \+ R( b4 o5 J; J5 l3 G# e% |" v
表(四)、触控面板产业链
0 v9 `9 ~, v8 P9 G image004.jpg * I3 M  T7 ?+ o+ ^% G) j6 v$ W
资料来源:拓墣产业研究所、升达科技整理
+ {/ r+ N) a9 m& _& g表(五)、全球触控面板主要厂商 3 q+ @! Q) Z$ Q1 ]+ z
image005.jpg - z% H2 K6 j5 O
资料来源:拓墣产业研究所、升达科技整理
$ g7 v. A2 a5 q: J
' n/ a  w! T2 F3 S- e$ l" m, B  @' I* F
(5)专利保护壁垒
1 d& g5 H4 Y4 J& a* A
十多年来在触控面板的发展,各家在专利上的布局已使这个产业地雷布满各式触控面板,当然其原创者皆会有所保护。单就投射电容式面板相关之专利即有100多种。后继者几乎完全没有插手的空间,目前在投射电容面板主要掌握在美国Synaptics(新思)、苹果计算机(Apple)及台湾升达(Sentelic)科技手上,此三家之专利布局绵密,几乎涵盖现在与未来发展所需的技术。下表反应了目前可查到之专利数量。

/ d' [* \2 ]# g8 u' w
表六、触摸屏相关专利统计 # [. s" R2 A6 u# I& }' b, Y6 \
image006.jpg
5 A3 U4 e' j- p" M5 X(不含申请中之专利)
8 `, g6 x6 B7 B
举个简单例子,触控板上要单击/双击、要多手指侦侧、要在板子上做滑动的动作,对不起这些都已有专利,多手指侦测后要做其它翻页动作,那更是苹果计算机(Apple)的专利,其它更底层技术性的便不在话下了。目前投射电容式尚未有多家及大量产品投入,可见未来之不久,一定刀光四射、狼唣不止。系统设计者必须凌波微步、左躲、右闪!

, I; r, i( {" p1 E  U2 W9 M三、多手指侦测应用以及系统整合:

8 v. C7 }" s# _) G+ P丑媳妇终究是要见公婆,技术终归要上台面,入应用。自从i Phone多手指应用之后,此项功能已成触控面板之主要功能,当然手写、笔写、单击、双击、卷动等传统之功能,更不在话下,因此针对各不同应用所需之技术趋势也便可想而知,成本则是另一重要考量,已不再赘言。就多指之应用而言,可想而知,只有投射电容式与红外线式,可做多指侦测并分占中小尺寸与大尺寸之市埸。有了多指侦测后,其它单击、双击、卷动、手写、笔写等也只是软件或韌体之应用而已。各式各样的屏幕上之变化也大都可由软件或韌体程序完成,因此基本问题便可带出:何种系统的架构整合最易、效率最好、成本最低、壁垒最少?以上考虑是系统业者最需深思之课题,因此我们可清楚地推论其最终之轮廓:
: J* B( G& o6 t: V1 w
(1)是塑料而不是玻璃。

% ^! _+ P0 w$ _7 F虽塑料(压克力,光学胶,PET Film)的光学特性与耐刮耐久性不如玻璃,且常需低温制程,但玻璃厚、重、加工难、制程贵、不耐摔,在长期成本压力之下,塑料仍是首选,尤其是PET Film(PET光学薄膜),因可导入Roll-to-Roll制程,故相当看好,其光学特性也在可接受范围,且传统电阻式触控面板厂亦有长期的经验,上下游整合完整,最终相信应是PET光学薄膜Film on Film的结构。

4 r- P% p8 w& O7 T% _( R/ e8 C(2)手势辨识在控制IC,不在系统端。
' B% O8 \+ @/ C( u$ h# ]) r/ N
一般是将手指的坐标传到系统,再由系统藉软件程序辨识手势,虽属可行但反应速度较慢,尤其是多指触控或手输入时更为明显,而当X、Y轴之讯号受外部杂干扰时,坐标的信息将更不可靠,造成手势辨识的困难,使得更复杂之手势无法支持,像i Phone也只有滑动与Zoom-in/Zoom out之动作而已。另外以目前之扫描方式(红外线或投射电容式或有建置X、Y轴扫描者),为了降低扫描线的数目都采所谓Load Grounded的做法,此一做法会造成不同之二手指坐标,而只有一个相同坐标,系统亦不可辨识。而IC内可用其它额外讯号辅助判断,此额外讯号通常因算法不同而形成各家不同整合之困难。

" a2 g% X9 c6 `& Z# f9 S(3)软硬兼施而不是吃软不吃硬。
/ o. ]2 ?1 I2 y7 D$ v5 v+ J
由于投射电容式面板门槛高,因此很难以纯软件/韌体的方法直接解决,更非一般低阶8bit MCU可有效解决,尤其需平行处理不同复杂讯号时,硬件方案与软件方案需做适切的分割搭配,方能降低高速CPU的耗能。这也是目前一般面板整合者相信用软件即可解决迷思。 4 ?. `9 y# X4 v. Z0 c8 Y( a
(4)善事必先利其器(客制化、开发之软/硬件开发工具)。
' ?: n* e( t% {- }终端系统整合工程师,一般并非都熟稔面板特性而为了应付多方使用情境的客制化需求,控制IC提供者是否提供一套,完整方便的软/硬开发工具,是系统整合者决定其解决方案的开发时程与品稳定度的重要关键。
7 L7 x9 ~3 A7 L/ S
四、结论
; [6 B+ g( _3 f; F% ]' U: c  \
就以上之讨论,在整个触控技术在现在产业链,约可做成如下几点结论:

& _; g& ?# c. U% [; i) ^: }/ e2 ~
  • 目前触控面板仍以小尺寸之应用主(尤其是多指触控)而投射电容式面板势将成为主流而逐渐取代电阻式方案。
  • Demo不等于量产,目前多指应用之解决方案,Demo者多但可量产者少,其间仍有相当大的距离。
  • 控制IC厂商本身的研发能量决定未来/电子/产品使用情境的发展。
  • 选择适当面板技术是系统厂商最重要量。
  • 与控制IC厂商的合作关系攸关触控面板厂商之生存。
  • 虽困难度高,但垂直整合势在必行。
4 x# w0 e6 |% d" P# J
总结触控面板技术,就多指触控其技术成本及普遍应用性来看,目前以投射电容式为发展主流,但仍有诸多的障碍需克服解决,以上提供给触控产业界朋友做一些参考。
发表于 2009-1-17 12:52:03 | 显示全部楼层
非常好的一篇文章
4 x& I1 b2 b, j. V. I: F9 E/ Z3 o+ B5 {" b4 F( r/ o" `
谢谢 鱼儿 为我们大家带来的好文章
6 ^6 l5 u3 K4 F# M
" c# v" ~" V6 d+ M.
发表于 2009-1-19 10:00:28 | 显示全部楼层
先读后顶
- b% {' g7 {% O) i" V2 u年末岁初5 r6 K; U9 J3 V% k2 f: L  Q/ Y
新年快乐!
发表于 2009-1-19 11:34:22 | 显示全部楼层
同上!
7 G2 T3 C7 F! D: U/ e新年快乐!
发表于 2009-1-21 14:40:24 | 显示全部楼层
非常感谢鱼儿带来这么好的文章,我已经珍藏起来了!
6 g: b" d! v3 M. e但是林总的上游材料PET这块怎么只有东丽和住友呢?5 R3 j; N$ p/ `, Y# Z
目前应该不是这两个品牌的最好吧。日本MSK的PET. P) M0 T5 J, X4 Y$ g5 R" K
才是目前市场上公认最好的PET吧!
发表于 2009-1-23 09:33:49 | 显示全部楼层
很受启发,了解了不少东西.- {1 l$ w7 K- f" I+ J1 y" K: u0 p
$ r* B0 _1 o$ u) `
谢谢林总, 也谢谢鱼儿的分享.
发表于 2009-1-24 09:47:04 | 显示全部楼层
very useful information, thanks
发表于 2009-1-24 21:28:10 | 显示全部楼层
三个结论两个值得商榷:
6 J% U* _4 |' N/ l8 t1。用塑料不用玻璃。我觉得也有可能用玻璃不用塑料,因为现在玻璃也很便宜了。2 C; Q! `( f& {& ]; i& S

8 d# Q/ W+ H- l. t/ d9 L3。8位MCU不行。这个好像有点绝对。Pixcir就是一般的8位MCU,效果也挺好。我倒是觉得iPhone这种32位MCU加64K SRAM实在太浪费了。
发表于 2009-2-6 16:38:38 | 显示全部楼层
之前看过文章,受益匪浅。1 R2 N# D7 J+ I" M3 q; P+ N; T# D
1。触控技术的人机界面时代到来,多点侦测是发展方向。) p) g( L+ E6 N( c4 ~- b8 r2 H4 [' w
2。电容屏的控制IC,系统整合方面的观点很有参考价值。
4 j, N6 X0 O* I* d1 J* e3。关于[目前面板厂无整合,测试与系统支持之经验,此段仍必须由IC设计
5 y! m' Y* z0 d' Z   厂来执行]的观点好像在说升达科技自己。
. C% `" S; J7 t4 i8 H   目前日资TP厂商Gunze已实现大屏上的稳定量产,并且在dell,HP等NB5 e9 m5 ]% Z! G9 ~- ^" g) p
  上使用。9 `/ a! I, Z, c1 u7 x+ T
4。对[是塑料而不是玻璃]的观点有同感。
发表于 2009-2-10 18:10:19 | 显示全部楼层
原帖由 casual3 于 2009-1-24 21:28 发表 & D3 e1 ]2 m5 x3 t" r
三个结论两个值得商榷:
, R; g6 H0 H1 O$ W7 a5 W1。用塑料不用玻璃。我觉得也有可能用玻璃不用塑料,因为现在玻璃也很便宜了。
5 e& o* ~0 z8 d$ g* A. E; i3 \$ D0 |+ S. X
3。8位MCU不行。这个好像有点绝对。Pixcir就是一般的8位MCU,效果也挺好。我倒是觉得iPhone这种32位MCU加6
& m8 q- z- m" Z0 Y1 f9 U
% a2 |9 ^9 O9 c9 W! q, T7 `
用塑料不单是从成本角度考虑,从耐破碎\耐震动角度,塑料也比玻璃要好
您需要登录后才可以回帖 登录 | 注册论坛

本版积分规则

地址:成都市高升桥东路2号高盛中心1109室 电话:028-85108892 13183843395
版权所有 Copyright(C) 51Touch.Com All rights reserved Archiver 触摸屏与OLED网 电子邮件:51touch@126.com
在线咨询QQ:触控面板,触摸屏原理,触摸屏一体机咨询 190798948    在线咨询微信: 13183843395(扫描下方二维码)

蜀ICP备05002005号
快速回复 返回顶部 返回列表